Increasing greenhouse cucumber growth and yield with nano calcium and silicon

Hayam A.A. Mahdy1, A.M.R. Abdelmawgoud2*, Z.F. Fawzy2 and Huda A. Ibrahim2

1Botany Department, National Research Center, Dokki, Giza, Egypt. 2Vegetable Research Department, National Research Center, Dokki, Giza, Egypt. Corresponding e-mail: DR_abdelmawgoud@yahoo.com

DOI: https://doi.org/10.37855/jah.2024.v26i01.02

Key words: Cucumber, nano calcium, nano silicon, plant growth, total fruit weight
Abstract: Trials were carried out in plastic greenhouses at a private farm in the Qaha region, Qalubia Governorate, Egypt (30.288 N; 31.198 E), during two consecutive spring seasons (2020 and 2021). The objective was to investigate the impact of nano compounds, spray specifically nano calcium and nano silicon, on the growth characteristics, yield, and quality of cucumber plants (Cucumis sativus L.) under protected cultivation conditions. The study used two foliar sprays of Lithovit® (nano calcium carbonate 80.2 %) at 0.0, 0.25, 0.5, and 1.0 g/L and nano silicon (SiO2 25 %) at 0.0, 0.5, 1.0, and 1.5 mL/L. Nano elements (calcium or silicon) were applied to cucumber seedlings in the second, fourth, sixth, and eighth weeks after transplantation. All monitored attributes increased with both nano-element treatments. Plants receiving nano calcium had higher plant height, fresh and dry weights, and branch counts than those receiving nano silicon. However, growth was best with 1.0 g/L nano calcium. Compared to control, nano elements boosted cucumber plant N, P, K, Ca, and Si. In both nano calcium and nano silicon treatments, fruit length, diameter, average weight, and total weight rose. Yield increases may outweigh nano nutrient costs.



Journal of Applied Horticulture