Deciphering metabolite profiling in grafted Solanum nigrum: A comprehensive GC-MS and FTIR analysis

Sneha Leela Garnepudi1*, L. Pugalendhi1, A. Sankari1, A. Usha Nandhini Devi2, M. Raveendran 3 and M.K. Kalarani4

1Department of Vegetable Science, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, 641003, India. 2Department of Post-Harvest and Technology, Tamil Nadu Agricultural University, Coimbatore, 641003, India. 3Directorate of Research, Tamil Nadu Agricultural University, Coimbatore, 641003, India. 4Director (Crop Management) Tamil Nadu Agricultural University, Coimbatore, 641003, India. Corresponding e-mail: snehawilliams96@gmail.com Tel: 9492708167

DOI: https://doi.org/10.37855/jah.2023.v25i03.52

Key words: Solanum nigrum, antioxidant, bioactive compound, FTIR, methanolic extract
Abstract: Vegetable grafting plays a significant role in modern agricultural practices, effectively managing abiotic and biotic stresses. Additionally, it offers the advantage of enhancing the phenotypic traits of the scion. This technique has gained widespread acceptance in commercial cultivation, particularly in crops like tomato, watermelon, melon, eggplant, etc., but has not been reported in Solanum nigrum. The appeal lies in its swiftness compared to the traditional method of breeding vegetables with improved environmental stress tolerance. This study focused on identifying and studying the components present in the leaves and fruits of both grafted and ungrafted Solanum nigrum. The GC-MS analysis unveiled a multitude of bioactive compounds, some of which are well-known antioxidants and possess anti-inflammatory properties. These beneficial attributes make them potentially valuable for promoting health and well-being. In addition, Fourier-Transform Infrared Spectroscopy (FTIR) was employed to identify functional groups in the methanolic extracts. The FTIR findings confirmed the existence of diverse functional groups, such as alkanes, alkynes, carboxylic acids, aldehydes, and nitriles, within the selected grafted Solanum nigrum samples. The research outcomes suggest that the extracts could be valuable in managing fungal infections in crops, which may contribute to the successful grafting of Solanum nigrum onto wild rootstocks. The presence of bioactive compounds with antifungal properties in the extracts might enhance disease resistance, making a successful grafting process a viable solution for improved and extended production. This underscores the critical necessity for continued research, highlighting its potential benefits to various domains, including medicine and nutrition.



Journal of Applied Horticulture