Influence of wicking bed system characteristics on tomato (Solanum lycopersicum L.) growth and yield

U. Greeshma1, J.S. Bindhu1*, P. Shalini Pillai1, D. Jacob1 and S. Sarada2

1Department of Agronomy, College of Agriculture, Vellayani, Kerala Agricultural University. 2Department of Vegetable Science, College of Agriculture, Vellayani, Kerala Agricultural University. Corresponding e-mail: jsbindhu@gmail.com

DOI: https://doi.org/10.37855/jah.2023.v25i02.32

Key words: Geotextile, reservoir depth, soil bed, tomato, wicking bed, yield
Abstract: Wicking bed systems have gained significant attention in the context of small-scale and urban horticulture as a result of their capacity to effectively mitigate water constraint and promote sustainable crop output. To further our comprehension of these systems, a research study was conducted during the summer of 2020-21 to evaluate the efficacy of tomato plants (Solanum lycopersicum L.) in a wicking bed system.The experimental design followed a Completely Randomized Design (CRD) with a total of eight different treatments, replicated three times. The treatments consisted of several arrangements of wicking bed systems, which involved variations in reservoir depths (100 mm and 150 mm), soil bed depths (200 mm and 300 mm), and the inclusion of coir geotextile as interlayers. Based on the conducted experiments on the results of various wicking bed configurations, it is advisable to utilize a reservoir depth of 150 mm and a soil bed depth of 300 mm, together with the inclusion of a geotextile interlayer, in order to maximize tomato yield inside a wicking bed system. The aforementioned study enhance our understanding of urban agriculture, sustainable water management and crop cultivation techniques.



Journal of Applied Horticulture