Design of dry coconut (Cocos nucifera L.) dehusking and deshelling machine components using solidworks simulation

V.A. Naliapara, V.M. Sejani and N.U. Joshi

Department of Processing and Food Engineering, College of Agricultural Engineering and Technology, Junagadh Agricultural University, Junagadh – 362001 (India). Corresponding e-mail: virajnaliapara18@gmail.com

DOI: https://doi.org/10.37855/jah.2023.v25i01.18

Key words: Coconut dehusking, Solidworks simulation, mechanical properties, design optimization, horticultural automation, safety and efficiency
Abstract: The main objective of this study was to develop a conceptual automated solution for the labour-intensive processes of coconut dehusking and deshelling. This was achieved by utilizing simulation-based design techniques. The study centred on the utilization of Computer-Aided Design (CAD) as a fundamental tool for the visualization and simulation of the proposed mechanisms. This study has developed a comprehensive framework for assessing the potential feasibility of the simulated dehusking and deshelling processes by conducting thorough evaluations that encompass stress, displacement, strain, and safety considerations. The cylindrical design with spiral spikes was designed to remove husks efficiently. CAD helped to comprehend the mechanism’s behavior, and subsequent analyses revealed that stress levels remained far below acceptable thresholds. The displacement and strain effects were negligible, providing the structural integrity of the simulated dehusking procedure. The design utilized strategically placed metal bars to improve contact points and effectiveness. The simulation-based assessments replicated the dehusking evaluations, confirming that stress, displacement, and strain remained within limits. This study shows that simulated automation in coconut processing has excellent potential and supports its real-world implementation. Computer-aided design (CAD) and thorough analyses ensured the safety and reliability of conceptual mechanisms and set a precedent for agricultural processing machinery. This study proposes a systematic approach to coconut processing that might change the industry by improving productivity and reducing manual labour.



Journal of Applied Horticulture