Journal Of Applied Horticulture ISSN: 0972-1045



WWW
horticultureresearch

K. Nagaz, M.M. Masmoudi and N. Ben Mechlia

Institut des Regions Arides, 4119 Medenine, Tunisia. INAT, 43 avenue Charles Nicolle, 2083 Tunis, Tunisia.

Key words: Arid, salinity, drip irrigation, irrigation scheduling, deficit irrigation, pepper, yield, water productivity

Journal of Applied Horticulture, 2012, volume 14, issue 1, pages 18-24.

Abstract: A two-year study was carried out to assess the effect of different irrigation scheduling regimes with saline water on soil salinity, yield and water productivity of pepper under actual commercial-farming conditions in the arid region of Tunisia. Pepper was grown on a sandy soil and drip-irrigated with water having an ECi of 3.6 dS/m. Four irrigation treatments were based on the use of soil water balance (SWB) to estimate irrigation amounts and timing while the fifth consisted of using farmers practices. SWB methods consisted in replacement of cumulated ETc when readily available water is depleted with levels of 100% (FI), 80% (DI-80) and 60% (DI-60). FI was considered as full irrigation while DI-80 and DI-60 were considered as deficit irrigation regimes. Regulated deficit irrigation regime where 40% reduction is applied only during ripening stage (FI-MDI60) was also used. Farmer method consisted of applying the producer method corresponding to irrigation practices implemented by the local farmers. Results on pepper yield and soil salinity are consistent between the two-year experiments and showed significant difference between irrigation regimes. Higher soil salinity was maintained over the two seasons, 2008 and 2009, with DI-60 and FM treatments than FI. FI-MDI60 and DI-80 treatments also resulted in low ECe values. Highest yields for both years were obtained under FI (22.3 and 24.4 t/ha) although we didn't find significant differences with the regulated deficit irrigation treatment (FI-DI60). However, DI-80 and DI-60 treatments caused significant reductions in pepper yields through a reduction in fruits number/m2 and average fruit weight in comparison with FI treatment. The FM increased soil salinity and caused significant reductions in yield with 14 to 43%, 12 to 39% more irrigation water use than FI, FI-MDI60 and DI-80 treatments in 2008 and 2009, respectively. Yields for all irrigation treatments were higher in the second year compared to the first year. Water productivity (WP) values reflected this difference and varied between 2.31 and 5.49 kg/m3. The WP was found to vary significantly among treatments, where the highest and the lowest values were observed for DI-60 treatment and FM, respectively. FI treatment provided significant advantage on yield and water productivity, compared to FM in pepper production under experimental conditions. For water-saving purposes, the FI irrigation scheduling is recommended for drip irrigated pepper grown under field conditions and can be used by farmers to optimize the use of saline water and to control soil salinity. In case of limited water supply, adopting deficit irrigation strategies (FI-DI60 and DI-80) could be an alternative for irrigation scheduling of pepper crop under the arid Mediterranean conditions of Tunisia.

Effect of deficit drip-irrigation scheduling regimes with saline water on pepper yield, water productivity and soil salinity under arid conditions of Tunisia



Journal of Applied Horticulture